126 research outputs found

    Investigating Text Legibility on Non-Rectangular Displays

    Get PDF

    Les retours tactile et kinesthésique améliorent la perception de distance en réalité virtuelle

    Get PDF
    National audienceResearch spanning psychology, neuroscience and HCI found that depth perception distortion is a common problem in virtual reality. This distortion results in depth compression, where users perceive objects closer than their intended distance. Studies suggested that cues, such as audio and haptic, help to solve this issue. We focus on haptic feedback and investigate how force feedback compares to tactile feedback within peripersonal space in reducing depth perception distortion. Our study (N=12) compares the use of haptic force feedback, vibration haptic feedback, a combination of both or no feedback. Our results show that both vibration and force feedback improve depth perception distortion over no feedback (8.3 times better distance estimation than with no haptic feedback vs. 1.4 to 1.5 times better with either vibration or force feedback on their own). Participants also subjectively preferred using force feedback, or a combination of force and vibration feedback, over no feedback.Des recherches en psychologie, neurosciences et IHM ont montré que la distorsion de la perception des distances est un problème courant en réalité virtuelle. Cette distorsion entraîne une compression des profondeurs, et les utilisateurs perçoivent des objets plus proches qu'ils ne le sont. Dans ce papier, nous nous concentrons sur le retour haptique et examinons comment le retour de force se compare au retour tactile pour réduire la compression des profondeurs. Notre étude (N = 12) compare l'utilisation du retour de force, le retour tactile vibratoire, la combinaison des deux ou l'absence de retour. Nos résultats montrent que le retour tactile et le retour de force améliorent la perception de la profondeur. L'estimation de distance est 8.3 fois meilleure que sans retour, par rapport à 1.4-1.5 fois avec retour tactile vibratoire ou de force non-combinés. Les participants ont également préféré utiliser le retour de force, ou une combinaison de force et tactile

    Leaf Menus: Linear Menus with Stroke Shortcuts for Small Handheld Devices

    No full text
    International audienceThis paper presents Leaf menu, a new type of contextual linear menu that supports curved gesture shortcuts. By providing an alternative to keyboard shortcuts, the Leaf menus can be used for the selection of commands on tabletops, but its key benefit is its adequacy to small handheld touchscreen devices (PDA, Smartphone). Indeed Leaf menus define a compact and known layout inherited from linear menus, they support precise finger interaction, they manage occlusion and they can be used in close proximity to the screen borders. Moreover, by providing stroke shortcuts, they favour the selection of frequent commands in expert mode and make eye-free selection possible

    Understanding grip shifts:how form factors impact hand movements on mobile phones

    Get PDF
    In this paper we present an investigation into how hand usage is affected by different mobile phone form factors. Our initial (qualitative) study explored how users interact with various mobile phone types (touchscreen, physical keyboard and stylus). The analysis of the videos revealed that each type of mobile phone affords specific handgrips and that the user shifts these grips and consequently the tilt and rotation of the phone depending on the context of interaction. In order to further investigate the tilt and rotation effects we conducted a controlled quantitative study in which we varied the size of the phone and the type of grips (Symmetric bimanual, Asymmetric bimanual with finger, Asymmetric bimanual with thumb and Single handed) to better understand how they affect the tilt and rotation during a dual pointing task. The results showed that the size of the phone does have a consequence and that the distance needed to reach action items affects the phones’ tilt and rotation. Additionally, we found that the amount of tilt, rotation and reach required corresponded with the participant’s grip preference. We finish the paper by discussing the design lessons for mobile UI and proposing design guidelines and applications for these insights

    How does HCI Understand Human Autonomy and Agency?

    Get PDF
    Funding Information: Funded by the European Union (ERC, THEORYCRAFT, 101043198). Publisher Copyright: © 2023 Owner/Author.Human agency and autonomy have always been fundamental concepts in HCI. New developments, including ubiquitous AI and the growing integration of technologies into our lives, make these issues ever pressing, as technologies increase their ability to influence our behaviours and values. However, in HCI understandings of autonomy and agency remain ambiguous. Both concepts are used to describe a wide range of phenomena pertaining to sense-of-control, material independence, and identity. It is unclear to what degree these understandings are compatible, and how they support the development of research programs and practical interventions. We address this by reviewing 30 years of HCI research on autonomy and agency to identify current understandings, open issues, and future directions. From this analysis, we identify ethical issues, and outline key themes to guide future work. We also articulate avenues for advancing clarity and specificity around these concepts, and for coordinating integrative work across different HCI communities.Peer reviewe

    Investigating how the hand interacts with different mobile phones

    Get PDF
    In this paper we investigate the physical interaction between the hand and three types of mobile device interaction: touchscreen, physical keyboard and stylus. Through a controlled study using video observational analysis, we observed firstly, how the participants gripped the three devices and how these grips were device dependent. Secondly we looked closely at these grips to uncover how participants performed what we call micro-movements to facilitate a greater range of interaction, e.g. reaching across the keyboard. The results extend current knowledge by comparing three handheld device input methods and observing the movements, which the hand makes in five grips. The paper concludes by describing the development of a conceptual design, proposed as a provocation for the opening of dialogue on how we conceive hand usage and how it might be optimized when designed for mobile devices

    Interaction techniques for mobile collocation

    Get PDF
    Research on mobile collocated interactions has been exploring situations where collocated users engage in collaborative activities using their personal mobile devices (e.g., smartphones and tablets), thus going from personal/individual toward shared/multiuser experiences and interactions. The proliferation of ever- smaller computers that can be worn on our wrists (e.g., Apple Watch) and other parts of the body (e.g., Google Glass), have expanded the possibilities and increased the complexity of interaction in what we term “mobile collocated” situations. The focus of this workshop is to bring together a community of researchers, designers and practitioners to explore novel interaction techniques for mobile collocated interactions

    KnobSlider:design of a shape-changing UI for parameter control

    Get PDF
    International audiencePhysical controls are widely used by professionals such as sound engineers or aircraft pilots. In particular knobs and sliders are the most prevalent in such interfaces. They have advantages over touchscreen GUIs, especially when users require quick and eyes-free control. However, their interfaces (e.g., mixing consoles) are often bulky and crowded. To improve this, we present the results of a formative study with professionals who use physical controllers. Based on their feedback, we propose design requirements for future interfaces for parameters control. We then introduce the design of our KnobSlider that combines the advantages of a knob and a slider in one unique shape-changing device. A qualitative study with professionals shows how KnobSlider supports the design requirements, and inspired new interactions and applications

    Outdoor Localization Using BLE RSSI and Accessible Pedestrian Signals for the Visually Impaired at Intersections

    Get PDF
    One of the major challenges for blind and visually impaired (BVI) people is traveling safely to cross intersections on foot. Many countries are now generating audible signals at crossings for visually impaired people to help with this problem. However, these accessible pedestrian signals can result in confusion for visually impaired people as they do not know which signal must be interpreted for traveling multiple crosses in complex road architecture. To solve this problem, we propose an assistive system called CAS (Crossing Assistance System) which extends the principle of the BLE (Bluetooth Low Energy) RSSI (Received Signal Strength Indicator) signal for outdoor and indoor location tracking and overcomes the intrinsic limitation of outdoor noise to enable us to locate the user effectively. We installed the system on a real-world intersection and collected a set of data for demonstrating the feasibility of outdoor RSSI tracking in a series of two studies. In the first study, our goal was to show the feasibility of using outdoor RSSI on the localization of four zones. We used a k-nearest neighbors (kNN) method and showed it led to 99.8% accuracy. In the second study, we extended our work to a more complex setup with nine zones, evaluated both the kNN and an additional method, a Support Vector Machine (SVM) with various RSSI features for classification. We found that the SVM performed best using the RSSI average, standard deviation, median, interquartile range (IQR) of the RSSI over a 5 s window. The best method can localize people with 97.7% accuracy. We conclude this paper by discussing how our system can impact navigation for BVI users in outdoor and indoor setups and what are the implications of these findings on the design of both wearable and traffic assistive technology for blind pedestrian navigation
    • …
    corecore